Ternary codes through ternary designs

نویسنده

  • Alexander L. Strehl
چکیده

It is known that under certain conditions the incidence matrix of a balanced incomplete block design (v, b, r, k, λ) gives a binary code of length b and size 2(v + 1). Here we investigate the conditions where a balanced ternary design gives a similar ternary code.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

Rigidity Theorems for a Class of Affine Resolvable Designs

The affine resolvable 2-(27, 9, 4) designs were classified by Lam and Tonchev [9, 10]. We use their construction of the designs to examine the ternary codes of the designs and show, using Magma [3], that each of the codes, apart from two, contains, amongst its constant weight-9 codewords, a copy of the ternary code of the affine geometry design of points and planes in AG3(F3). We also show how ...

متن کامل

Two classes of ternary codes and their weight distributions

In this paper we describe two classes of ternary codes, determine their minimum weight and weight distribution, and prove their properties. We also present four classes of 1-designs that are based on the classes of ternary codes.

متن کامل

Separability of ternary codes for sparse designs of error-correcting output codes

Error-correcting output codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. With the extension of the binary ECOC to the ternary ECOC framework, ECOC designs have been proposed in order to better adapt to distributions of the data. In order to decode ternary matrices, recent works redefined many decoding strategie...

متن کامل

Tricolore 3-designs in Type III codes

A split complete weight enumerator in six variables is used to study the 3-colored designs held by codewords of xed composition in Type III codes containing the all-one codeword. In particular the ternary Golay code contains 3-colored 3-designs. We conjecture that every weight class in a Type III code with the all-one codeword holds 3-colored 3-designs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2004